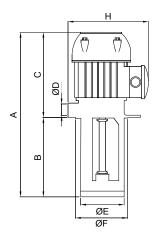


Die Pumpen eignen sich zur Förderung von Flüssigkeiten, deren Verunreinigungen eine Größe von max. 3

Die hydraulischen Komponenten: Laufrad, Mutter und Pumpenkörper aus PBT ermöglichen die Anwendung mit Wasser, Emulsionen und ölhaltigen Substanzen im Allgemeinen, die Viskosität darf 21 cSt (3° Engler) nicht übersteigen.

Die Temperatur der Flüssigkeit darf 70°C nicht überschreiten.


Sie finden gewöhnlich Anwendung bei:

- Werkzeugmaschinen (Fräsen-Drehmaschinen-Bohrer)
- Glasbearbeitungsmaschinen (Version TRI)
- Klima- und Konditionierungsanlagen

Sie werden normalerweise auf einem Tank, etwa 2-3 cm vom Boden, installiert. Die Tankkapazität hängt von der Förderleistung ab. Es muss unbedingt sichergestellt werden, dass der max. Flüssigkeitsstand im Tank 3-4 cm unterhalb des Stützflansches liegt (siehe Abbildung).

Sollte die Flüssigkeit besonders verschmutzt sein, ist es ratsam einen Tank mit mehreren Fächern zu bauen, damit sich der Schmutz absetzen kann, bevor er von der Pumpe angesaugt wird.

Für andere Anwendungen ist es ratsam, sich mit unserer technischen Abteilung in Verbindung zu setzen.

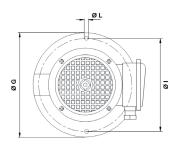
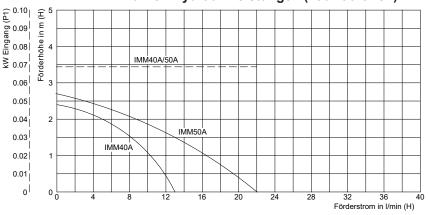


Tabelle: Abmessungen und Gewichte


Art dar Dumna	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Masse
Art der Pumpe	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	224	80									1.80
IMM 40	264	120	111	2/0"	70		120	140	111	7	1.83
IIVIIVI 40	294	150	144	3/8"	78	90	130	140	114	(n.2)	1.85
	324	180									1.88
	224	80									1.80
IMM 50	264	120	144	3/8"	78	90	130	140	114	7	1.83
IIVIIVI 30	294	150	144	3/0	10	90	130	140	114	(n.2)	1.85
	324	180									1.88

Typ	ens	ch	ildo	date	n

	k\	Ν	V 230/4	100 - Hz 5	0	0 0	
Art der Pumpe	Eingang	Nenn.	In	n	cos φ	Q - Qmax Liter/min	Hmax - H Meter
· ·	(P1)	(P2)	Amp.	min ⁻¹		Litei/IIIII	Meter
IMM 40	0,07	0,03	0,35/0,20	2730	0,58	5 - 13	2,0 - 0
IMM 50	0,09	0,04	0,35/0,20	2620	0.60	3 - 22	2.5 - 0

Kurven Hydraulikleistungen (Laufrad offen)

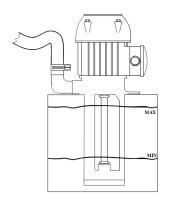
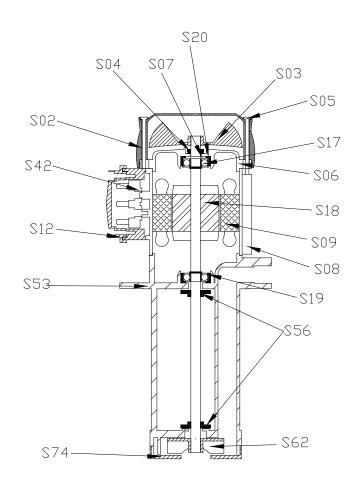



Tabelle Hydraulikleistungen (Laufrad offen)

			-	,				,	-	-	- /
Förderhöhe in m (H) \rightarrow	0	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0
Art der Pumpe				För	derstr	om in l	/min (Q)			
IMM 40	13	12	10	8	5						
IMM 50	22	19	16	13	9	3					

Rev. 01/2018

Nomenklatur der Ersatzteile

	Komponente
S02.	Lüfterhaube
S03.	Lüfterrad
S04.	V-Ring
S05.	Stange
S06.	Oberer Lagerschild
S07.	Ausgleichsring
S08.	Gehäuse
S09.	Gewickelter Stator
S12.	Klemmenkasten
S17.	Oberes Lager
S18.	Läufer Komplet
S19.	Unteres Lager
S20.	Kappe für Lager
S42.	Klemmenbrett
S53.	Pumpenkörper
S56.	TRI-Scheibe
S62.	Laufrad
S74.	Boden

IMM 40
Materialien
Nylon
Nylon
NBR
Stahl
Nylon
Stahl
Aluminium
-
Nylon
-
Stahl*
-
NBR
-
PBT
PBT
Nylon
PBT

^{*} Auf Anfrage Ax.AISI316

Materialien Nylon Nylon NBR Stahl Nylon Stahl Aluminium
Nylon NBR Stahl Nylon Stahl
NBR Stahl Nylon Stahl
Stahl Nylon Stahl
Nylon Stahl
Stahl
Aluminium -
-
Nylon
-
Stahl*
-
NBR
-
PBT
PBT
Nylon
PBT

^{*} Auf Anfrage Ax.AISI316

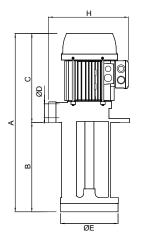
Rev. 01/2018

Die Pumpen eignen sich zur Förderung von Flüssigkeiten, deren Verunreinigungen eine Größe von max. 3 mm

Die hydraulischen Komponenten: Laufrad und Mutter aus Nylon und Pumpenkörper aus Aluminium ermöglichen die Anwendung mit Wasser, Emulsionen und ölhaltigen Substanzen im Allgemeinen; die Viskosität darf 21 cSt (3° Engler) nicht übersteigen.

Die Temperatur der Flüssigkeit darf 70°C nicht überschreiten.

Sie finden gewöhnlich Anwendung bei:

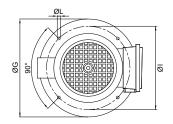

- Werkzeugmaschinen (Fräsen-Drehmaschinen-Bohrer)
- Glasbearbeitungsmaschinen (Version TRI)
- Anlagen zur Oberflächenbehandlung
- Filtrieranlagen
- Klima- und Konditionierungsanlagen

Sie werden normalerweise auf einem Tank, etwa 4-5 cm vom Boden, installiert. Die Tankkapazität hängt von der Förderleistung ab.

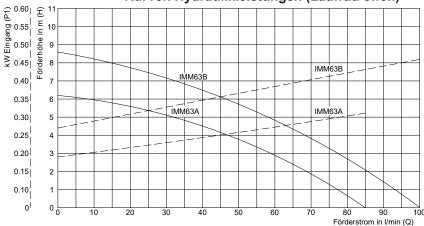
Es muss unbedingt sichergestellt werden, dass der max. Flüssigkeitsstand im Tank 3-4 cm unterhalb des Stützflansches liegt (siehe Abbildung).

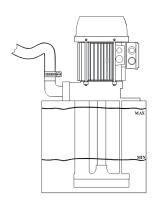
Sollte die Flüssigkeit besonders verschmutzt sein, ist es ratsam einen Tank mit mehreren Fächern zu bauen, damit sich der Schmutz absetzen kann, bevor er von der Pumpe angesaugt wird.

Für andere Anwendungen ist es ratsam, sich mit unserer technischen Abteilung in Verbindung zu setzen.


Tabelle: Abmessungen und Gewichte

Art der Pumpe	Α	В	С	ØD	ØE	ØG	Н	ØI	ØL	Masse
Art der Fullipe	mm	mm	mm		mm	mm	mm	mm	mm	kg
	355	150 T								5.0
IMM 63A	405	200 T	205	3/4"	128	180	190	150	9	5.1
IIVIIVI OSA	455	250 T	205	3/4	120	100	190	150	(n.4)	5.3
	505	300 T								5.4
	355	150 T								5.5
IMM 63B	405	200 T	205	3/4"	128	180	190	150	9	5.7
IIVIIVI OSD	455	250 T	205	3/4	120	100	190	150	(n.4)	5.9
	505	300 T								6.0


Auf Anfrage: T= TRI-Ausführung


Typenschilddaten

	k\	Ν	V 230/4	100 - Hz 5	0	0 0		
Art der Pumpe	Eingang	Nenn.	In	n	cos φ	Q - Qmax	Hmax - H	
	(P1)		Amp.	min ⁻¹		Liter/min	Meter	
IMM 63A	0,38	0,25	1,30/0,75	2720	0.72	8 - 85	6 - 0	
IMM 63B	0,52	0,37	1.65/0.95	2760	0.79	15-100	8 - 0	

Kurven Hydraulikleistungen (Laufrad offen)

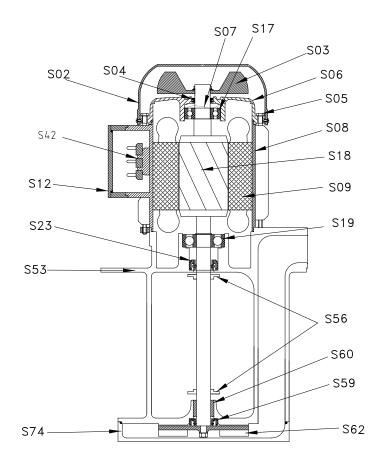


Tabelle Hydraulikleistungen (Laufrad offen)

Förderhöhe in m (H) \rightarrow	0	1	2	3	4	5	6	7	8	9	10
Art der Pumpe				Förde	rstron	n in I/ı	min (C	9)↓			
IMM 63A	85	77	69	59	47	32	8				
IMM 63B	100	93	85	77	68	58	46	32	15		

Rev. 01/2018

Nomenklatur der Ersatzteile

	Komponente
S02.	
S03.	Lüfterrad
S04.	V-Ring
S05.	Stange
S06.	Oberer Lagerschild
S07.	Ausgleichsring
S08.	Gehäuse
S09.	Gewickelter Stator
S12.	Klemmenkasten
S17.	Oberes Lager
S18.	Läufer Komplet
S19.	Unteres Lager
S23.	Dichtring für Motor
S42.	Klemmenbrett
S53.	Pumpenkörper
S56.	TRI-Scheibe
S59.	Dichtring für Mutter
S60.	Bronzebuchse
S62.	Laufrad
S74.	Mutter

IMM 63A Materialien

Materialien
Nylon*
Nylon
NBR
Stahl
Aluminium
Stahl
Aluminium
-
Nylon
-
Stahl**
-
NBR
-
Aluminium
PBT
NBR
Bronze
Nylon
Nylon

*Auf Anfrage Blech **Auf Anfrage Ax.AISI 416

IMM 63B

Materialien
Nylon*
Nylon
NBR
Stahl
Aluminium
Stahl
Aluminium
-
Nylon
-
Stahl**
-
NBR
-
Aluminium
PBT
NBR
Bronze
Nylon
Nylon

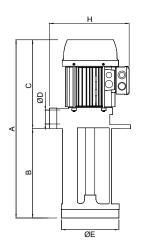
*Auf Anfrage Blech **Auf Anfrage Ax.AISI 416

Rev. 01/2018

Die Pumpen eignen sich zur Förderung von Flüssigkeiten, deren Verunreinigungen eine Größe von max. 3 mm haben. Die hydraulischen Komponenten: Laufrad aus Messing und Mutter und Pumpenkörper aus Aluminium ermöglichen die Anwendung mit Wasser, Emulsionen und ölhaltigen Substanzen im Allgemeinen; die Viskosität darf 21 cSt (3° Engler) nicht übersteigen.

Die Temperatur der Flüssigkeit darf 90°C nicht überschreiten.

Sie finden gewöhnlich Anwendung bei:

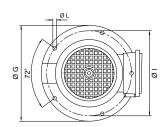

- Werkzeugmaschinen (Fräsen-Drehmaschinen)
- Glasbearbeitungsmaschinen (Version TRI)
- Anlagen zur Oberflächenbehandlung
- Filtrieranlagen
- Klima- und Konditionierungsanlagen

Sie werden normalerweise auf einem Tank, etwa 4-5 cm vom Boden, installiert. Die Tankkapazität hängt von der Förderleistung ab.

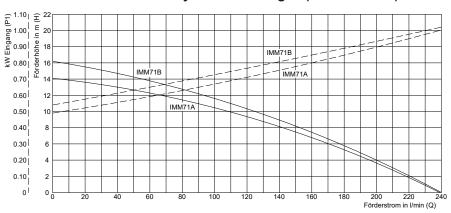
Es muss unbedingt sichergestellt werden, dass der max. Flüssigkeitsstand im Tank 3-4 cm unterhalb des Stützflansches liegt (siehe Abbildung).

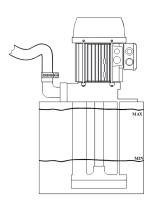
Sollte die Flüssigkeit besonders verschmutzt sein, ist es ratsam einen Tank mit mehreren Fächern zu bauen, damit sich der Schmutz absetzen kann, bevor er von der Pumpe angesaugt wird.

Für andere Anwendungen ist es ratsam, sich mit unserer technischen Abteilung in Verbindung zu setzen.


Tabelle: Abmessungen und Gewichte

Art der Pumpe	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Masse
Ait dei Fullipe	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	440	200 T									9.3
IMM 71A	490	250 T	240	1"	190		230	225	204	9	9.7
IIVIIVI / IA	565	325 T	240	'	190	_	230	225	204	(n.5)	10.0
	680	440									11.3
	440	200 T									10.2
IMM 71B	490	250 T	240	1"	190		230	225	204	9	10.5
IIVIIVI / ID	565	325 T	240	'	190	_	230	225	204	(n.5)	10.9
	680	440									12.2


Auf Anfrage: T= TRI-Ausführung


Typenschilddaten

ĺ		k\	N	V 230/4	100 - Hz 5	0	0 0 0 0 0 0 1	Llmay II
	Art der Pumpe	Eingang	Nenn.	In	n	cos φ	Q - Qmax	Hmax - H
	<u> </u>	(P1)	(P2)	Amp.	min ⁻¹		Liter/min	Meter
	IMM 71A	1,00	0,75	3,24/1,87	2770	0,77	4 - 238	14 - 0
	IMM 71B	1,20	0,90	3,83/2,21	2760	0,78	6 - 240	16 - 0

Kurven Hydraulikleistungen (Laufrad offen)

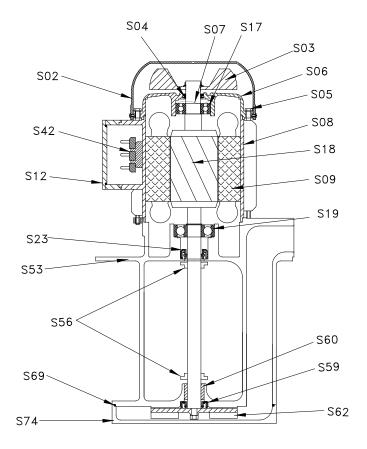


Tabelle Hydraulikleistungen (Laufrad offen)

Förderhöhe in m (H) \rightarrow	0	1	2	3	4	5	6	7	8	9	10	12	14	16	18
Art der Pumpe						Förde	rstrom	in I/m	in (Q)	\downarrow					
IMM 71A	238	229	220	206	197	185	172	157	143	128	109	67	4		
IMM 71B	240	230	220	210	200	190	177	166	152	140	124	67	55	6	

Rev. 01/2018

Nomenklatur der Ersatzteile

	Komponente
S02.	Lüfterhaube
S03.	Lüfterrad
S04.	V-Ring
S05.	Stange
S06.	Oberer Lagerschild
S07.	Ausgleichsring
S08.	Gehäuse
S09.	Gewickelter Stator
S12.	Klemmenkasten
S17.	Oberes Lager
S18.	Läufer Komplet
S19.	Unteres Lager
S23.	Dichtring für Motor
S42.	Klemmenbrett
S53.	Pumpenkörper
S56.	TRI-Scheibe
S59.	Dichtring für Mutter
S60.	Bronzebuchse
S62.	Laufrad
S69.	O-Ring
S74.	Mutter

IMM 71A

Materialien
Nylon*
Nylon
NBR
Stahl
Aluminium
Stahl
Aluminium
-
Nylon
-
Stahl**
-
NBR
-
Aluminium
PBT
NBR
Bronze
Messing 58
NBR
Aluminium

*Auf Anfrage Blech **Auf Anfrage Ax. AISI 416

IMM 71B

Materialien
Nylon*
Nylon
NBR
Stahl
Aluminium
Stahl
Aluminium
-
Nylon
-
Stahl**
-
NBR
-
Aluminium
PBT
NBR
Bronze
Messing 58
NBR
Aluminium

*Auf Anfrage Blech **Auf Anfrage Ax. AISI 416

Rev. 01/2018

Die Pumpen eignen sich zur Förderung von Flüssigkeiten, deren Verunreinigungen eine Größe von max. 3 mm haben. Die hydraulischen Komponenten: Laufrad aus Messing und Mutter und Pumpenkörper aus Aluminium ermöglichen die Anwendung mit Wasser, Emulsionen und ölhaltigen Substanzen im Allgemeinen; die Viskosität darf 21 cSt (3° Engler) nicht übersteigen.

Die Temperatur der Flüssigkeit darf 90°C nicht überschreiten.

Sie finden gewöhnlich Anwendung bei:

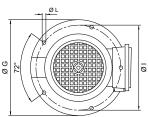
- Werkzeugmaschinen (Fräsen-Drehmaschinen)
- Glasbearbeitungsmaschinen (Version TRI)
- Anlagen zur Oberflächenbehandlung
- Filtrieranlagen
- Klima- und Konditionierungsanlagen

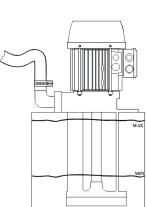
Sie werden normalerweise auf einem Tank, etwa 4-5 cm vom Boden, installiert. Die Tankkapazität hängt von der Förderleistung ab.

Es muss unbedingt sichergestellt werden, dass der max. Flüssigkeitsstand im Tank 3-4 cm unterhalb des Stützflansches liegt (siehe Abbildung).

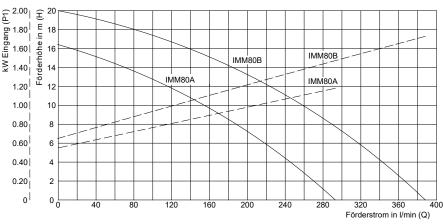
Sollte die Flüssigkeit besonders verschmutzt sein, ist es ratsam einen Tank mit mehreren Fächern zu bauen, damit sich der Schmutz absetzen kann, bevor er von der Pumpe angesaugt wird.

Für andere Anwendungen ist es ratsam, sich mit unserer technischen Abteilung in Verbindung zu setzen.


Tabelle: Abmessungen und Gewichte


Art der Pumpe	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Masse
Art der Fullipe	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	485	200 T									14.5
	535	250 T								9	15.0
A08 MMI	585	300 T	285	1 1/4"	202	220	250	260	235	_	15.5
	635	350 T								(n.5)	16.0
	815	530									18.0
	485	200 T									15.4
	535	250 T								9	15.9
IMM 80B	585	300 T	285	1 1/4"	202	220	250	260	235		16.4
	635	350 T								(n.5)	16.9
	815	530									19.0

Auf Anfrage: T= TRI-Ausführung


Typenschilddaten

	k\	Ν	V 230	/400 - Hz	50	Q - Qmax	Hmax - H
Art der Pumpe	Eingang	Nenn.	In	n	cos φ		
·	(P1)	(P2)	Amp.	min ⁻¹		Liter/min	Meter
A08 MMI	1,41	1,1	4.3/2.5	2825	0,81	14 - 293	16 - 0
IMM 80B	1,86	1,5	5,7/3,3	2845	0,83	80 - 388	18 - 0

Kurven Hydraulikleistungen (Laufrad offen)

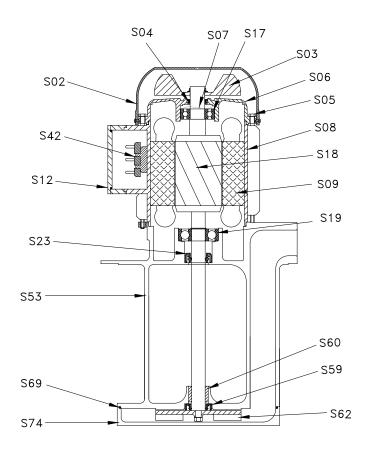


Tabelle Hydraulikleistungen (Laufrad offen)

	Förderhöhe in m (H) →	0	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20
	Art der Pumpe						Fċ	orders	trom i	n I/mir	n (Q) 、	,					
Γ	IMM 80A	293	279	267	256	242	229	218	212	196	179	155	116	71	14		
	IMM 80B	388	378	366	355	344	332	319	303	289	275	260	224	185	140	80	

Rev. 01/2018

Nomenklatur der Ersatzteile

	Komponente
S02.	Lüfterhaube
S03.	Lüfterrad
S04.	V-Ring
S05.	Stange
S06.	Oberer Lagerschild
S07.	Ausgleichsring
S08.	Gehäuse
S09.	Gewickelter Stator
S12.	Klemmenkasten
S17.	Oberes Lager
S18.	Läufer Komplet
S19.	Unteres Lager
S23.	Dichtring für Motor
S42.	Klemmenbrett
S53.	Pumpenkörper
S59.	Dichtring für Mutter
S60.	Bronzebuchse
S62.	Laufrad
S69.	O-Ring
S74.	Mutter

IMM 80A

Materialien
Nylon*
Nylon
NBR
Stahl
Aluminium
Stahl
Aluminium
-
Nylon
-
Stahl**
-
NBR
-
Aluminium
NBR
Bronze
Messing 58
NBR
Aluminium

*Auf Anfrage Blech **Auf Anfrage Ax.AISI 416

IMM 80B

Materialien
Nylon*
Nylon
NBR
Stahl
Aluminium
Stahl
Aluminium
-
Nylon
-
Stahl**
-
NBR
-
Aluminium
NBR
Bronze
Messing 58
NBR
Aluminium

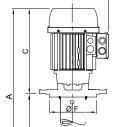
*Auf Anfrage Blech **Auf Anfrage Ax.AISI 416

Rev. 01/2018

Die Pumpen eignen sich zur Förderung von Flüssigkeiten, deren Verunreinigungen eine Größe von max. 4 mm haben. Die hydraulischen Komponenten: Laufrad und Mutter aus Gusseisen und Pumpenkörper aus Stahl ermöglichen die Anwendung mit Wasser, Emulsionen und ölhaltigen Substanzen im Allgemeinen, die Viskosität darf 21 cSt (3° Engler) nicht übersteigen.

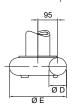
Die Temperatur der Flüssigkeit darf 90°C nicht überschreiten.

Sie finden gewöhnlich Anwendung bei:

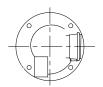

- Werkzeugmaschinen
- Glasbearbeitungsmaschinen
- Anlagen zur Oberflächenbehandlung
- Filtrieranlagen
- Lackierkabinen

Sie werden normalerweise auf einem Tank, etwa 7-8 cm vom Boden, installiert. Die Tankkapazität hängt von der Förderleistung ab.

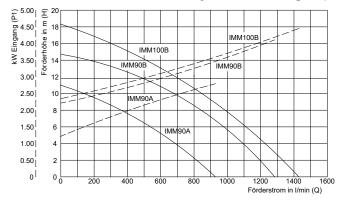
Es muss unbedingt sichergestellt werden, dass der max. Flüssigkeitsstand im Tank 5-6 cm unterhalb des Stützflansches liegt (siehe Abbildung).

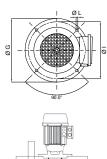

Sollte die Flüssigkeit besonders verschmutzt sein, ist es ratsam einen Tank mit mehreren Fächern zu bauen, damit sich der Schmutz absetzen kann, bevor er von der Pumpe angesaugt wird.

Für andere Anwendungen ist es ratsam, sich mit unserer technischen Abteilung in Verbindung zu setzen.


Tabelle: Abmessungen und Gewichte

Art der Pumpe	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Masse
Art der Fullipe	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	695	350		0"	005	040	000	400	070		47.5
18484 00 4	795	450	0.45							13	48.1
IMM 90A	945	600	345	2"	235	240	300	130	270	Nr.4	48.8
	1145	800]								50.0
	695	350	345	2"	235	240	300	130	270	13 Nr.4	49.0
INANA OOD	795	450									49.6
IMM 90B	945	600									50.0
	1145	800									51.5
	730	350		2 ½"		0.40	300	145	270	13	53.0
IMM 100B	830	450	200		005						53.6
	980	600	380		235	240				Nr.4	54.3
	1180	800									55.5




Typenschilddaten

	kW		V 230/4	100 - Hz 5	Q - Qmax	Hmax - H		
Art der Pumpe	Eingang	Nenn.	In	n	cos φ		Meter	
·	(P1)	(P2)	Amp.	min ⁻¹	-	Liter/min		
IMM 90A	2.70	2.2	8.1/4.7	2870	0.83	119 - 928	10 - 0	
IMM 90B	3.58	3	10.6/6.1	2855	0.84	172 - 1284	14 - 0	
IMM 100B	4 85	4	14 9/8 6	2875	0.81	50 - 1430	18 - 0	

Kurven Hydraulikleistungen (Laufrad offen)

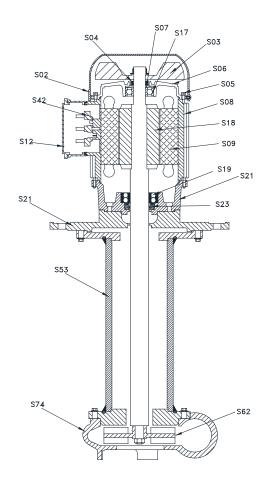

MAX MIN

Tabelle Hydraulikleistungen (Laufrad offen)

Förderhöhe in m (H) →	0	2	4	6	8	10	12	14	16	18	20
Art der Pumpe		Förderstrom in I/min (Q) ↓									
IMM 90A	928	816	709	551	341	119					
IMM 90B	1284 1186 1083 977 833 682		682	484	172						
IMM 100B	1430	1335	1230	1115	987	847	710	512	304	50	

Nomenklatur der Ersatzteile

		IMM 90A	IMM 90B	IMM 100B
	Komponente	Materialien	Materialien	Materialien
S02.	Lüfterhaube	Nylon*	Nylon*	Nylon*
S03.	Lüfterrad	Nylon	Nylon	Nylon
S04.	V-Ring	NBR	NBR	NBR
S05.	Stange	Stahl	Stahl	Stahl
S06.	Oberer Lagerschild	Aluminium	Aluminium	Aluminium
S07.	Ausgleichsring	Stahl	Stahl	Stahl
S08.	Gehäuse	Aluminium	Aluminium	Aluminium
S09.	Gewickelter Stator	-	-	-
S12.	Klemmenkasten	Nylon	Nylon	Nylon
S17.	Oberes Lager	-	-	-
S18.	Läufer Komplet	Stahl	Stahl	Stahl
S19.	Unteres Lager	-	-	-
S21.	Spezialschild	Gusseisen G20	Gusseisen G20	Gusseisen G20
S21.	Stützflansch	Gusseisen G20	Gusseisen G20	Gusseisen G20
S23.	Dichtring für Motor	NBR	NBR	NBR
S42.	Klemmenbrett	-	-	-
S53.	Pumpenkörper	Stahl	Stahl	Stahl
S62.	Laufrad	Gusseisen G20	Gusseisen G20	Gusseisen G20
S74.	Mutter	Gusseisen G20	Gusseisen G20	Gusseisen G20

*Auf Anfrage Blech

*Auf Anfrage Blech

*Auf Anfrage Blech

Rev. 01/2018